Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[bis(3-acetylpyridine-кN)-cadmium]-di- μ-selenocyanato$\left.\kappa^{2} N: S e ; \kappa^{2} S e: N\right]$

Julia Werner,* Jan Boeckmann, Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-
Strasse 2, 24118 Kiel, Germany
Correspondence e-mail: jwerner@ac.uni-kiel.de
Received 23 April 2012; accepted 24 April 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.031 ; w R$ factor $=0.061$; data-to-parameter ratio $=21.0$.

In the crystal structure of the title compound, $\left[\mathrm{Cd}(\mathrm{NCSe})_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]_{n}$, the Cd^{2+} cation is coordinated by two 3acetylpyridine ligands and four $\mu-1,3$-bridging selenocyanate anions within a slightly distorted $\mathrm{CdN}_{4} \mathrm{Se}_{2}$ octahedron. The asymmetric units consists of one Cd^{2+} cation, which is situated on a center of inversion, as well as one selenocyanate anion and one 3 -acetylpyridine ligand in general positions. The metal cations are μ-1,3-bridged via the selenocyanate anions into chains along the a axis.

Related literature

For general background information including details on thermal decomposition reactions and magnetic properties of the precursor and $\mu-1,3$ bridging compounds, see: Näther \& Greve (2003); Boeckmann \& Näther (2010, 2011); Wöhlert et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=564.63$
Monoclinic, $P 2_{1} / c$
$a=5.9447$ (3) A
$b=18.7233$ (10) A
$c=8.7548$ (5) A
$\beta=94.020$ (4) ${ }^{\circ}$

Data collection

Stoe IPDS-2 diffractometer
Absorption correction: numerical (X-SHAPE and X-RED32;
Stoe \& Cie, 2008)
$T_{\text {min }}=0.667, T_{\text {max }}=0.902$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.061$
$S=1.13$
2458 reflections

$$
V=972.05(9) \AA^{3}
$$

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=4.88 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.16 \times 0.07 \times 0.02 \mathrm{~mm}$

17180 measured reflections 2458 independent reflections 2256 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

$$
\begin{aligned}
& 117 \text { parameters } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
$$

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5897).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Boeckmann, J. \& Näther, C. (2010). Dalton Trans. 39, 11019-11026.
Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106.
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Näther, C. \& Greve, J. (2003). J. Solid State Chem., 176, 259-265.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Boeckmann, J., Wriedt, M. \& Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.

supplementary materials

catena-Poly[[bis(3-acetylpyridine- κN)cadmium]-di- μ-selenocyanato$\left.\kappa^{2} N: S e ; \kappa^{2} \operatorname{Se}: N\right]$

Julia Werner, Jan Boeckmann, Inke Jess and Christian Näther

Comment

The title compound was prepared within a project on the synthesis and the magnetic properties of paramagnetic transition metal thio- and selenocyanato coordination polymers in which the metal cations are $\mu-1,3$ bridged by the anionic ligands (Näther \& Greve, 2003, Boeckmann \& Näther, 2010, 2011 and Wöhlert et al., 2011). In this context, also the corresponding compounds based on diamagnetic cadmium are of interest, because they are structural analogs of the paramagnetic compounds. In the course of systematic investigations crystals of the title compound were prepared and characterized by single crystal X-ray diffraction.
In the crystal structure of the title compound, the cadmium(II) cations each are coordinated by two nitrogen atoms of two terminal N-bonded 3-acetylpyridine and two nitrogen and two selenium atoms of $\mu-1,3$ bridging selenocyanato anions (Fig. 1). The coordination polyhedron of the Cd cations can be described as a slightly distorted octahedra with the Cd cation located on a centre of inversion.
The Cd^{2+} cations are $\mu-1,3$ bridged by selenocyanato anions into chains, which elongate in the direction of the crystallographic a axis (Fig. 2). The Cd \cdots Cd intrachain distance amounts to 5.9447 (3) \AA and the shortest interchain $\mathrm{Cd} \cdots \mathrm{Cd}$ distance amounts to 8.7548 (5) \AA. It must be noted that according to a search in the CCDC database (ConQuest Ver.1.14.2012) (Allen, 2002) coordination compounds based on metal selenocyanates and 3-acetylpyridine are unknown.

Experimental

Potassium selenocyanate and 3-acetylpyridine were purchased from Alfa Aesar, $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ were obtained from Merck. The title compound was prepared by the reaction of $77.1 \mathrm{mg} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol}), 64.8 \mathrm{mg} \mathrm{KSeCN}(0.45$ mmol) and $109 \mu L$ 3-acetylpyridine (1.00 mmol) in $1.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ at RT in a closed 3 ml snap cap vial. After several days colourless needles of the title compound were obtained.

Refinement

H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms (1.5 for methyl H atoms) using a riding model with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ (aromatic) and with $\mathrm{C}-\mathrm{H}=0.96 \AA$ (methyl).

Computing details

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X - $A R E A$ (Stoe \& Cie, 2008); data reduction: X-AREA (Stoe \& Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: $\mathrm{i}=-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}, \mathrm{ii}=\mathrm{x}-1, \mathrm{y}, \mathrm{z}, \mathrm{iii}=-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$

Figure 2
Crystal structure of the title compound with view of the chains that elongate in the direction of the crystallographic a axis.
catena-Poly[[bis(3-acetylpyridine- κN)cadmium]-di- μ - selenocyanato- $\kappa^{2} N: S e ; \kappa^{2} \operatorname{Se}: N$]

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=564.63$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=5.9447$ (3) Å
$b=18.7233$ (10) \AA
$c=8.7548$ (5) \AA
$\beta=94.020(4)^{\circ}$
$V=972.05(9) \AA^{3}$
$Z=2$
$F(000)=540$
$D_{\mathrm{x}}=1.929 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17180 reflections
$\theta=2.2-28.6^{\circ}$
$\mu=4.88 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.16 \times 0.07 \times 0.02 \mathrm{~mm}$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.667, T_{\text {max }}=0.902$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.061$
$S=1.13$
2458 reflections
117 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0164 P)^{2}+1.1235 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0074 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd1	0.0000	0.5000	0.0000	$0.03766(9)$
N1	$0.3333(4)$	$0.44388(15)$	$0.0928(3)$	$0.0478(6)$
C1	$0.5139(4)$	$0.43756(15)$	$0.1480(3)$	$0.0377(6)$
Se1	$0.79466(5)$	$0.429324(18)$	$0.23721(4)$	$0.04545(11)$
N11	$0.0930(4)$	$0.60142(13)$	$0.1566(3)$	$0.0422(5)$
O11	$0.5790(6)$	$0.72219(18)$	$0.5227(4)$	$0.1005(13)$
C11	$0.2729(5)$	$0.60423(17)$	$0.2585(3)$	$0.0430(6)$
H11	0.3604	0.5633	0.2736	0.052^{*}
C12	$0.3348(5)$	$0.66449(16)$	$0.3420(4)$	$0.0442(7)$
C13	$0.2032(6)$	$0.72501(18)$	$0.3206(5)$	$0.0592(9)$
H13	0.2402	0.7666	0.3746	0.071^{*}
C14	$0.0168(7)$	$0.72283(19)$	$0.2183(5)$	$0.0675(11)$
H14	-0.0757	0.7626	0.2034	0.081^{*}
C15	$-0.0302(6)$	$0.66083(17)$	$0.1387(4)$	$0.0533(8)$
H15	-0.1548	0.6602	0.0683	0.064^{*}
C16	$0.5372(6)$	$0.6672(2)$	$0.4547(4)$	$0.0570(9)$
C17	$0.6815(6)$	$0.6032(2)$	$0.4794(4)$	$0.0632(10)$
H17A	0.8070	0.6144	0.5503	0.095^{*}
H17B	0.7360	0.5884	0.3837	0.095^{*}
H17C	0.5951	0.5653	0.5202	0.095^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.02405(13)$	$0.04299(16)$	$0.04447(17)$	$-0.00160(10)$	$-0.00794(10)$	$-0.00268(12)$
N1	$0.0285(11)$	$0.0554(15)$	$0.0583(17)$	$0.0002(10)$	$-0.0059(11)$	$0.0068(12)$
C1	$0.0305(13)$	$0.0398(14)$	$0.0425(15)$	$0.0013(10)$	$0.0002(11)$	$0.0028(11)$
Se1	$0.02761(14)$	$0.0576(2)$	$0.04962(19)$	$0.00067(12)$	$-0.00791(11)$	$0.01084(14)$
N11	$0.0365(12)$	$0.0447(13)$	$0.0439(14)$	$-0.0023(10)$	$-0.0074(10)$	$0.0003(10)$
O11	$0.088(2)$	$0.082(2)$	$0.123(3)$	$0.0018(18)$	$-0.053(2)$	$-0.043(2)$
C11	$0.0372(14)$	$0.0447(15)$	$0.0457(16)$	$-0.0003(12)$	$-0.0075(12)$	$-0.0022(12)$
C12	$0.0418(15)$	$0.0442(15)$	$0.0453(16)$	$-0.0047(12)$	$-0.0064(12)$	$-0.0030(12)$
C13	$0.067(2)$	$0.0412(17)$	$0.066(2)$	$-0.0009(15)$	$-0.0177(18)$	$-0.0074(15)$
C14	$0.074(2)$	$0.0444(18)$	$0.079(3)$	$0.0125(17)$	$-0.029(2)$	$-0.0031(17)$
C15	$0.0510(18)$	$0.0498(18)$	$0.056(2)$	$-0.0003(14)$	$-0.0182(15)$	$0.0033(14)$

supplementary materials

C 16	$0.0466(18)$	$0.061(2)$	$0.062(2)$	$-0.0043(15)$	$-0.0136(15)$	$-0.0132(16)$
C 17	$0.0481(19)$	$0.080(3)$	$0.058(2)$	$0.0041(18)$	$-0.0163(16)$	$-0.0063(19)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$	2.337 (2)	C11-H11	0.9300
Cd1-N1	2.337 (2)	C12-C13	1.382 (5)
Cd1-N11	2.384 (2)	C12-C16	1.502 (4)
Cd1-N11 ${ }^{\text {i }}$	2.384 (2)	C13-C14	1.376 (5)
$\mathrm{Cd} 1-\mathrm{Sel}{ }^{\text {ii }}$	2.8124 (3)	C13-H13	0.9300
$\mathrm{Cd1}-\mathrm{Sel}^{\text {iii }}$	2.8124 (3)	C14-C15	1.373 (5)
N1-C1	1.152 (4)	C14-H14	0.9300
C1-Se1	1.799 (3)	C15-H15	0.9300
Sel-Cd1 ${ }^{\text {iv }}$	2.8124 (3)	C16-C17	1.481 (5)
N11-C15	1.335 (4)	C17-H17A	0.9600
N11-C11	1.345 (3)	C17-H17B	0.9600
O11-C16	1.206 (4)	C17-H17C	0.9600
C11-C12	1.380 (4)		
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	180.00 (12)	C12-C11-H11	118.2
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 11$	89.92 (9)	C11-C12-C13	118.1 (3)
N1-Cd1-N11	90.08 (9)	C11-C12-C16	123.2 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 11^{\text {i }}$	90.08 (9)	C13-C12-C16	118.7 (3)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 11^{\mathrm{i}}$	89.92 (9)	C14-C13-C12	119.1 (3)
N11-Cd1-N11 ${ }^{\text {i }}$	180.0	C14-C13-H13	120.5
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Se}^{1 i}$	86.16 (7)	C12-C13-H13	120.5
N1-Cd1-Se1 ${ }^{\text {ii }}$	93.84 (7)	C15-C14-C13	118.8 (3)
N11-Cd1-Se1 ${ }^{\text {ii }}$	87.41 (6)	C15-C14-H14	120.6
N11 ${ }^{\text {i }}$ - Cd 1 - $\mathrm{Se}^{1 i}$	92.59 (6)	C13-C14-H14	120.6
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Se} 1^{\text {iii }}$	93.84 (7)	N11-C15-C14	123.7 (3)
N1-Cd1-Se1 ${ }^{\text {iii }}$	86.16 (7)	N11-C15-H15	118.2
N11-Cd1-Se1 ${ }^{\text {iii }}$	92.59 (6)	C14-C15-H15	118.2
N11- Cd1-Se1 ${ }^{\text {iii }}$	87.41 (6)	O11-C16-C17	121.4 (3)
Se1ii-Cd1—-Se1 ${ }^{\text {iii }}$	180.0	$\mathrm{O} 11-\mathrm{C} 16-\mathrm{C} 12$	118.8 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	159.1 (3)	C17-C16-C12	119.8 (3)
N1-C1-Se1	178.7 (3)	C16-C17-H17A	109.5
C1-Se1-Cd1 ${ }^{\text {iv }}$	94.39 (9)	C16-C17-H17B	109.5
C15-N11-C11	116.7 (3)	H17A-C17-H17B	109.5
C15-N11-Cd1	119.5 (2)	C16-C17-H17C	109.5
C11-N11-Cd1	123.7 (2)	H17A-C17-H17C	109.5
N11-C11-C12	123.6 (3)	H17B-C17-H17C	109.5
N11-C11-H11	118.2		

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z$; (iii) $x-1, y, z$; (iv) $x+1, y, z$.

